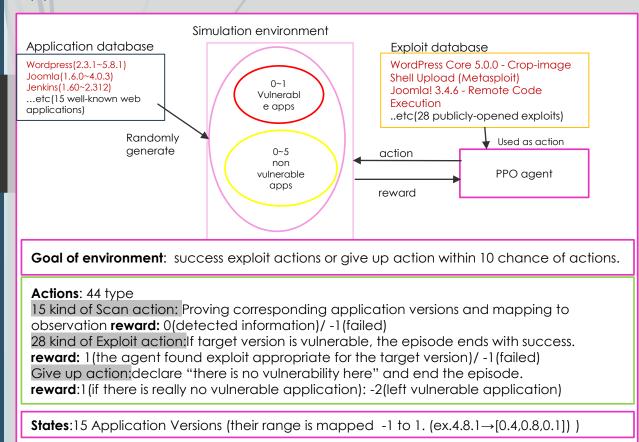
Towards Automation of Penetration Testing for Web Applications by Deep Reinforcement Learning

Hajime Kuno and Kanta Matsuura (The University of Tokyo)

Introduction


Penetration testing (PT) that assesses vulnerabilities by considering and executing all possible attacks is important in security engineering but very expensive due to the need of experienced professionals.

As a countermeasure, there are attempts[1]–[4] to partially automate and improve the efficiency of PT. Such approaches do not embed ML in PT tools, and would not improve the tools themselves.

In this work, we use **deep reinforcement learning** to automate search and exploit executions for various vulnerabilities existing in Web applications so that a wide variety of PT tools can be integrated in an effective manner with embedded ML.

Experiment 1

Using manually collected application versions from their official webpage and exploits from exploit-db, launched simulation environment and **PPO** agents to choose effective exploits from application versions.

The result averaged over three trials is shown

Result 1

of

age 40

bel 30 the

> 50 150 250 300 0 100 200 the number of episodes * 1000 As a result, the percentage of success reached nearly 90%.

This shows the task can be handled by deep reinforcement learning.

Defined

for word joomla, Other a are defi and the

Enviro When th

for this e

Enviro

When th correct have re range o

- attack.
- The agent should correctly determine that the environment is harmless if the exploit unexpectedly fails because of DBMS, OS, and other causes \rightarrow adjust the algorithm parameters so that the time series data can be learned correctly.

(WorldS4), 2018. (ICCP), 2020

Experiment2

connect the real-life applications and exploits to the learned model of Experiment 1 and demonstrate the applicability of our approach in more realistic environment.

Defined Action	Affected Versions
Wordpress scan	All
Wordpress exploit	5.0.0 and <=4.9.8
Jenkins scan	All
Jenkins exploit	1.60-1658
Joomla scan	All
Joomla exploit	3.0.0-3.4.6
phpmyadmin scan	All
phpmyadmin exploit	4.8.0-1
	Wordpress scan Wordpress exploit Jenkins scan Jenkins exploit Joomla scan Joomla exploit phpmyadmin scan

	Applications	Versions	Vulnerable Action	
Environment 1:	Wordpress	5.8.1	Not Vulnerable	
When the exploits correct	Jenkins	2.137	Not Vulnerable	
•	Joomla	3.4.3	Joomla exploit	
for this environment have	phpmyadmin	5.1.1	Not Vulnerable	
wider range of target versions.				

nment 2:	Applications	Versions	Vulnerable Action
ne exploits	Wordpress	5.8.1	Not Vulnerable
for this environment	Jenkins	2.137	Not Vulnerable
latively narrower	Joomla	4.0.3	Not Vulnerable
of target versions.	phpmyadmin	4.8.1	phpmyadmin exploit

Result 2

As a result of 30 demonstrations in each of the two states:

 Environment 1 Found valid exploits:26 Gave up:4 Could find correct exploits many times.

• Environment 2

Time up: 22 Gave up:8 Couldn't find correct exploits, and wasted time to useless exploits. So the target range of exploit affects the performance of PT.

Future works

• exploits of RCE only in specific versions are not the only means of

 \rightarrow Improvements based on such logic would make our proposed approach more realistic and easier to use.

Reference

[1] https://github.com/13o-bbrbbq/machine learning security/tree/master/ DeepExploit, accessed on October 25, 2021.

[2] https://github.com/rapid7/metasploitframework/wiki, accessed on October 31, 2021.

[3] Mohamed C. Ghanem and Thomas M. Chen, "Reinforcement Learning for Intelligent Penetration Testing", 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability

[4] Ovidiu Valea and Ciprian Opris, "Towards Pentesting Automation Using the Metasploit Framework", 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing