
Towards Automation of Penetration Testing for Web

Applications by Deep Reinforcement Learning

Introduction

Penetration testing (PT) that assesses vulnerabilities by considering and executing all possible attacks is important
in security engineering but very expensive due to the need of experienced professionals.

As a countermeasure, there are attempts[1]–[4] to partially automate and improve the efficiency of PT. Such
approaches do not embed ML in PT tools, and would not improve the tools themselves.

In this work, we use deep reinforcement learning to automate search and exploit executions for various
vulnerabilities existing in Web applications so that a wide variety of PT tools can be integrated in an effective
manner with embedded ML.

Experiment 1
Using manually collected application versions from their official
webpage and exploits from exploit-db, launched simulation
environment and PPO agents to choose effective exploits from
application versions.

Result 1
The result averaged over three trials is shown
below.

As a result, the percentage of success
reached nearly 90%.
This shows the task can be handled by deep
reinforcement learning.

Experiment2
connect the real-life applications and exploits

to the learned model of Experiment 1 and

demonstrate the applicability of our approach

in more realistic environment.

Defined actions:
for wordpress,Jenkins,
joomla,phpmyadmin.
Other actions
are defined only the shape,
and they definitely fails.

Environment 1:
When the exploits correct
for this environment have
wider range of target versions.

Environment 2:
When the exploits
correct for this environment
have relatively narrower
range of target versions.

Result 2
As a result of 30
demonstrations in
each of the two
states:

・Environment 1
Found valid
exploits :26
Gave up :4
Could find correct
exploits many times.

・Environment 2
Time up: 22
Gave up :8
Couldn’t find
correct exploits,
and wasted time to
useless exploits.
So the target range
of exploit affects
the performance of
PT.

Future works
・exploits of RCE only in specific versions are not the only means of

attack.
→Improvements based on such logic would make our proposed
approach more realistic and easier to use.
・The agent should correctly determine that the environment is harmless

if the exploit unexpectedly fails because of DBMS, OS ,and other causes
→ adjust the algorithm parameters so that the time series data can be
learned correctly.

Hajime Kuno and Kanta Matsuura(The University of Tokyo)

PPO agent

0~1

Vulnerabl

e apps

0~5

non

vulnerable

apps

Simulation environment

action

reward

Actions: 44 type

15 kind of Scan action: Proving corresponding application versions and mapping to

observation reward: 0(detected information)/ -1(failed)

28 kind of Exploit action:If target version is vulnerable, the episode ends with success.

reward: 1(the agent found exploit appropriate for the target version)/ -1(failed)

Give up action:declare “there is no vulnerability here” and end the episode.

reward:1(if there is really no vulnerable application): -2(left vulnerable application)

Wordpress(2.3.1~5.8.1)

Joomla(1.6.0~4.0.3)

Jenkins(1.60~2.312)

…etc(15 well-known web

applications)

Randomly
generate

Application database

WordPress Core 5.0.0 - Crop-image
Shell Upload (Metasploit)
Joomla! 3.4.6 - Remote Code
Execution
..etc(28 publicly-opened exploits)

Exploit database

Used as action

Defined Action Affected Versions

Wordpress scan All

Wordpress exploit 5.0.0 and <=4.9.8

Jenkins scan All

Jenkins exploit 1.60-1658

Joomla scan All

Joomla exploit 3.0.0-3.4.6

phpmyadmin scan All

phpmyadmin exploit 4.8.0-1

Applications Versions Vulnerable Action

Wordpress 5.8.1 Not Vulnerable

Jenkins 2.137 Not Vulnerable

Joomla 3.4.3 Joomla exploit

phpmyadmin 5.1.1 Not Vulnerable

Applications Versions Vulnerable Action

Wordpress 5.8.1 Not Vulnerable

Jenkins 2.137 Not Vulnerable

Joomla 4.0.3 Not Vulnerable

phpmyadmin 4.8.1 phpmyadmin exploit

States:15 Application Versions (their range is mapped -1 to 1. (ex.4.8.1→[0.4,0.8,0.1]))

Goal of environment: success exploit actions or give up action within 10 chance of actions.

Reference
[1] https://github.com/13o-bbrbbq/machine learning security/tree/master/ DeepExploit, accessed

on October 25, 2021.

[2] https://github.com/rapid7/metasploitframework/wiki, accessed on October 31, 2021.

[3] Mohamed C. Ghanem and Thomas M. Chen, “Reinforcement Learning for Intelligent Penetration

Testing”, 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability

(WorldS4), 2018.

[4] Ovidiu Valea and Ciprian Opris, “Towards Pentesting Automation Using the Metasploit Framework”,

2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing

(ICCP), 2020

